
Quantum Coding Theory (UC Berkeley CS294, Spring 2024)

Lecture 9: More on CSS Codes and Qudit Codes
February 21, 2024

Lecturer: John Wright Scribe: Lucas Gretta

1 Introduction

1.1 Reviewing CSS Codes

We review the definition of a CSS Code, a type of stabilizer code constructed from two
classical codes.

Definition 1.1 (CSS Code). A stabilizer code specified by two classical linear ECCs, Cx, Cz,
such that C⊥

z ⊆ Cx (implying C⊥
x ⊆ Cz). Its parity checks are {Xhx |hx ∈ C⊥

x } ∪ {Zhz |hz ∈
C⊥

z }, where Xh = Xh1Xh2 · · ·Xhn .

What this construction means, is that any codeword |ψ⟩ when viewed in the Z-basis is
supported on states cz ∈ Cz, and similarly when viewed in the X-basis |ψ⟩ is supported on
cx ∈ CX . To construct a good CSS code, we need to find two good codes that satisfies the
constraint C⊥

x ⊆ Cz, which makes them hard to design.
CSS codes would not be that useful unless the Cx, Cz codes informed us about their

corresponding CSS code.

Fact 1.2. If Cz is a [n, n − lz, dz] linear ECC and Cx is a [n, n − lx, dx] linear ECC and
C⊥

x ⊆ Cz, then their corresponding CSS code is a [n, n−lz−lx, d] code, where d ≥ min(dx, dz).

The above fact formalizes the intuition that each parity check cuts down the dimension
by 1.

1.2 CSS Code States

Now we ask what does a code state look like? Unlike other QECCs, it is easy to find a basis.

cz ∈ CZ −→ |cz⟩ :=
1√
|C⊥

x |

∑
hx∈C⊥

x

|cz + hx⟩

For |cz⟩ to be in our CSS code, we need it to pass all X and Z parity checks. As
hx ∈ C⊥

x ⊆ Cz, by linearity of Cz, |cz⟩ is a superposition over elements of Cz and hence
passes all the Z parity checks).To see that it passes all of the X parity checks, note that for
h′x ∈ C⊥

x

1

Xh′
x |cz⟩ =

1√
|C⊥

x |

∑
hx∈C⊥

x

|cz + hx + h′x⟩

=
1√
|C⊥

x |

∑
hx∈C⊥

x

|cz + hx⟩

= |cz⟩

where the second line holds as we are summing over all of C⊥
x , so adding a fixed shift to

every element does not change the summation. Therefore |cz⟩ is a +1 eigenvector of the X
parity checks.

As we have this duality between x and z, it is worth seeing how the ”dual” of |cz⟩ looks,
that is how H⊗n |cz⟩ looks.

Fact 1.3. H⊗n |cz⟩ = 1√
|Cx|

∑
cx∈Cx

|cx⟩ (−1)cxcz

We might ask if each element of cz corresponds to a unique |cz⟩? In fact we have already
seen that this is not the case, as for h ∈ C⊥

x ⊆ Cz, |cz⟩ =
∣∣cz + h

〉
. In fact, every coset in

Cz/C
⊥
x corresponds to a unique basis element. This ties into Fact 1.2, as the dimension of

Cz/C
⊥
x is n− lz − (n− (n− lx)) = n− lz − lx.

1.3 Steane Code

Now we see our second quantum ECC due to [Ste96], a CSS code based on the [7, 4, 3]
Hamming Code

Figure 1: A visual representation of the [7, 4, 3] Hamming Code. To send bits x1, x2, x3, x4,
we add three parity check bits, so that the sum of the elements of each circle (when viewed
as elements of F2) is 0.

2

Calculating the distance Why is the distance 3? Note that if we flip x1, x2, x3 the parity
check bits are all still correct, so the distance is ≤ 3. As this code is linear, the distance
is equal to the minimum hamming weight of a nonzero codeword. Note that if we put 0
everywhere but 1 for a p or one of the xs, at least one parity will be wrong, so there are no
codewords of hamming weight 1. Note that once we place a 1, we must also flip another bit
in the circles containing the 1 in order to either change the parity bit or make the parity bit
right. If we flip x4, then we need to flip a bit in each of the three circles, which we can not
as x4 is already taken. If we flip x1, we need to flip two circles, but as x4 must be 0 and x1 is
taken, we can not flip both of the two circles. Therefore by symmetry all of the xs must be
0. But then once we flip a p there are no more elements to flip in the same circle. Therefore
there are no codewords of size ≤ 2.

Examining the dual code Writing out the parity check matrix H, we get

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


Now lets write the generator matrix.

G =


0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1
1 1 1 1 1 1 1


Now we note something interesting, the first three rows of G are H! Therefore C⊥

Ham =
rowspan(H) ⊆ CHam. So to get the Steane code, we just set Cx = Cz = CHam. This gives
a [[7, 1, d]] code with d ≥ min(dx, dy) = 3, and in fact this code is a [[7, 1, 3]] code. This is
known to be the smallest CSS code of the form [[x, 1, 3]], but as we saw earlier we can get a
[[5, 1, 3]] stabilizer code, so stabilizer codes can do better than CSS codes.

2 Qudit Codes

A lot of classical codes are not on bits, they are over larger alphabets. Taking inspiration
from this, in this section we generalize CSS codes over qudits to CSS codes over qudits. For
this section let p denote a prime. (Sometimes qudits over alphabets of size p are called qupits,
but John thinks this sounds silly.)

Qudits are like qubits, but where the basis is |0⟩ , |1⟩ , . . . , |p− 1⟩, where we think of each
ket as containing an element of Fp.

3

2.1 Generalized Paulis

Now we generalize the paulis to qudits. Let ω := e2πn/p be the pth root of unity.
Then define operators Zp and Xp by

Zp |k⟩ = ωk |k⟩
Xp |k⟩ = |k + 1⟩

Finding eigenbases Note that |0⟩ , . . . , |p− 1⟩ form an orthonormal eigenbasis of Zp, so
it makes sense to refer to the standard basis of qudits as the Z-basis. What about for Xp?
After some squinting, we get that defining for 0 ≤ k ≤ p − 1, |kx⟩ :=

∑
i∈{0,...,p−1}(ω

−k)i |i⟩
similarly form an orthonormal eigenbasis for Xp, so we have an X-basis. We note that for
the qubit case p = 2, this agrees with our previously defined Paulis.

Fact 2.1. Zp |kx⟩ = |(k + 1)x⟩

Interestingly, we note that these generalized Paulis are not Hermitian, which may be
cause for alarm. For non-binary observables, it turns out that the roots of unity are the
natural eigenvalues, which could not be the case if the Paulis are Hermitian. For the sake of
concision, we will drop the ps for the rest of the section.

2.1.1 Commutating Properties

What happens to the commuting/anticommuting properties of the Pauli’s? Using Fact 2.1,
we get

XZ |k⟩ = ωkX |k⟩ = ωk |k + 1⟩
ZX |k⟩ = Z |k + 1⟩ = ωk+1 |k + 1⟩

We no longer have Z2 = X2 = I, but Zp = Xp = I. So what happens when we commute
Za past Xb?

Fact 2.2. ZaXb = ωbaXbZa

Which we see as each pair of X and Z picks up an ω phase. So these two commute iff
ab ≡ 0 mod p.

But our parity checks are tensor products. Letting a, b ∈ Fn
p , we have

Fact 2.3. ZaXb = ωa·bXbZa

We note that we have a expanded set of parity checks, rather than their being “one way
to fail”, now we have many.

So they commute iff a · b ≡ 0 mod p.

4

2.2 Building Parity Checks

Analogously to the qubit case, a state |ψ⟩ passes a parity check if it is a +1 eigenvector of it.

Example 2.4. For the parity check ZZIII, states of the form |k⟩ ⊗ |−k⟩ ⊗ |abc⟩ pass it.

Letting a, k ∈ Fn
p , we have that |k⟩ passes Za if

Za |k⟩ = ωa·k |k⟩ = |k⟩
that is, a·k ≡ 0 mod p. And as it turns out, to define a CSS Code over qudits, everything

works out!

2.3 CSS Codes for Qudits

Definition 2.5 (CSS Codes for qudits). Let Cx, Cz ⊆ F
n
p be linear ECCs. Then the

corresponding CSS Code is a stabilizer code with parity checks are {Xh
x |hx ∈ C⊥

x } and
{Zh

z |hz ∈ C⊥
z }.

We note that, just like in the qubit case, these Paulis form a linear basis for all n-qubit
matrices.

3 Polynomial Codes: Reed-Solomon

Polynomial codes leverage the following fact

Fact 3.1. For f(x) = f0 + f1 + · · ·+ fdx
d, fi ∈ Fp, if f ̸= 0, f has ≤ d zeros.

This implies that, if f ̸= g, then f and g agree on ≤ d points, as f − g has ≤ d zeroes.
Let S = {x1, . . . , xn} be a subset of distinct points in Fp.

Definition 3.2 (value representation). The value representation of f with respect to S is

valS(f) := (f(x1), . . . , f(xn))

By Fact 3.1, if f, g are distinct polynomials over Fp with degree d, their value representa-
tion agrees on ≤ d points. Therefore dist(valS(f), valuesS(g)) ≥ n − d. Also note that the
value representation is linear.

Definition 3.3 (Reed-Solomon Code). The Reed-Solomon Code [RS60]RSd encodes (f0, . . . , fd) ∈
F

d+1
p −→ valS(f). By the above, this gets a [n, d+ 1, n− d]p linear code

A basis for RSd is valS(1), valS(x), . . . , valS(x
d), which is seen by linearity. It turns out

Fp \{0}, aka Z∗
p is the easiest S to use. There exists a primitive root r of Z∗

p, so we can make

valS(f) =
(
f(r0), f(r1), . . . , f(rp−2)

)
we will continue this discussion next lecture.

5

References

[RS60] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of
the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960. 3.3

[Ste96] Andrew Steane. Multiple particle interference and quantum error correction. Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical and Engi-
neering Sciences, 452(1954):2551–2577, November 1996. 1.3

6

	Introduction
	Reviewing CSS Codes
	CSS Code States
	Steane Code

	Qudit Codes
	Generalized Paulis
	Commutating Properties

	Building Parity Checks
	CSS Codes for Qudits

	Polynomial Codes: Reed-Solomon

